Modern PCB Design

Matching Router Technology With Design Challenges

Sami Aarras
Team Leader, PWB
Mentor Graphics Finland
Agenda

- Challenges in PCB routing
- Design constraint types
- Bus path design
- Team collaboration
Interconnect Routing Challenges

- **Design constraints**
 - Too many; sometimes conflicting; limit flexibility
 - Must understand rules to know when they can be bent

- **Bus path design**
 - Parallel and serial structures

- **Emphasis on reduced design time**
 - Need for team collaboration and design reuse
Current State of PCB Design

- Many designs involve significant interactive labor
 - Interactive labor for the sake of “art” is diminishing
 - Use of automation within interactive tasks is evolving
- Auto-routers often used for place/routing strategy evals
- Designers iterate between automatic & interactive tasks
 - Auto route typically not a push-button solution
- High volume of design constraints demand a high level of creativity from designers
- Engineering and layout designer roles are blending
- The traditional “one layout, one designer” methodology is being challenged
Agenda

- Challenges in PCB routing
- Design constraint types
- Bus path design
- Team collaboration
Current State of Constraints

- Designers want manual-like results that meet constraints
 - Want tools that follow placement/routing concepts in their head
- More constraints are used to get the tool to follow designer intent
- Too many constraints cause the router to fail
- Need to abstract constraints so router will succeed
- Constraints transfer intent to others for multiple shifts, ECOs
Design Constraint Types

- Electrical
- Manufacturing
- Mechanical
- Thermal
- Reliability
- ...

[Images of circuit designs and constraints]
Electrical Constraints

Timing

- Constraints specified as length or delay
 - Individual nets or matched groups
 - Must also assign net topologies
 - Pin-to-pin (real or virtual) constraints
- After part placement, the only timing control available is lengthening
- Tuning can introduce additional problems
Electrical Constraints

Crosstalk

- Constraints specified as crosstalk (mV) or parallelism (length/spacing tables)
 - Crosstalk value is more accurate but requires definition of additional driver data
- Crosstalk tuning is usually done after most routes are complete
Electrical Constraints

Differential Pairs

- Constraints include
 - Pair tolerance
 - Convergence length
 - Separation length
 - Differential spacing
- Must ensure topologies match
- Route, then tune to delay
Manufacturing Constraints

Design for Fabrication

- Standard clearances
 - Trace, pad, via, plane
 - By net class and by layer
- Acid traps
- Embedded passives
- Cavities
- Lead-free materials
- Materials and stack-up dependent on target fabricator
Manufacturing Constraints

Design for Assembly

- Component type clearances
- Target assembly equipment
- Lead-free soldering processes
- Reflow or wave solder
- Rework requirements
- Bare die: wire bonds, die stacking
Manufacturing Constraints

Design for Test

- Test point placement
 - Impact of via-in-pad and BGA fanouts
- Make sure access points available during fanout
- Collaborate with engineer regarding % coverage
- Define test point regions relative to neighboring parts
- Test methodology dependent on operating frequency
Agenda

- Challenges in PCB routing
- Design constraint types
- Bus path design
- Team collaboration
Differential Pairs and Multi-Gigabit

- Synchronously clocked “parallel” architectures (primarily single-ended)
- Asynchronously clocked “serial” architectures (primarily differential pair)
- SERDES (serializer – at driver; deserializer – at load)

Frequency

~ 10 MHz 0.5 GHz Multi-GHz
Benefit of Moving to Serial Interconnects

- PCI-Express @ 2.5 Gb/s
- 53% board area reduction
- Decreased layer count
- Decreased component count
- Increased bandwidth

Twice the bandwidth with ½ (or less!) the number of pins

Reduced System Cost

Intel Developers Forum, Fall 2002
PCI-e Constraints

- **Timing**
 - Tightly length-match differential pairs
 - Length-match lanes within a link
 - Minimize lengths to control losses
 - Shorter lengths produce less crosstalk

- **Stack-up**
 - Use wider traces to minimize loss
 - Allow adequate spacing for crosstalk isolation

- **Layout**
 - Keep like-direction signals away from one another
 - Maintain spacing from higher-voltage aggressors
Traditional Parallel Buses Still Exist!

- Serial interconnect only make up 10-20% of designs
- Parallel structures have long been associated with the “artistry” of PCBs
 - Improved performance (matched timing & impedance)
 - Improved ECO-ability
- Serial usage
 - Above 1GHz; low power; high noise immunity; high data rates; telecom, networking, mil/aero
- Parallel usage
 - Below 500MHz; cheap; high noise margins; simpler device architecture; consumer electronics, automotive, industrial
Parallel Bus Routing

Without adequate constraints, auto routers do this

...but designers would prefer this
Parallel Bus Routing

Typical Design Process

- Design engineer
 - Typically sketches the physical bus systems and sub-systems architecture on paper
 - Specific placement and bus interconnect guidelines remain in hard copy form with little automation

- Board designer
 - Looks for potential routing patterns that flow from component to component
 - Plans ahead, knowing why a particular group of traces must route in a certain path on a specific layer
Parallel Bus Routing
The Traditional Auto-Router

- The auto-router is inherently layer biased
- The auto-router does not plan ahead like a board designer
 - One net at a time
 - Push & shove or rip-up & retry to clean-up
 - Can’t fully support designer’s vision for component placement and interconnect flow
- It's fairly easy to spot a hand-routed board over one that has been auto-routed
 - As a result, auto-routers are largely ignored
Parallel Bus Routing

Topology-Driven Design

Old methodology

Planning

New methodology

Planning

Routing
Parallel Bus Routing

Topology-Driven Design

- Topology planning represents a higher level of abstraction for design constraints
 - Simpler to specify
 - More placement planning than routing task
- Designers don’t think Manhattan/biased
 - Buses usually flow across layer bias
- Represents efficient man/machine interaction
 - Plan / route iterations
- Potential shift in user responsibilities
 - Either engineer drives layout planning…
 …or layout designer takes on engineering planning
Agenda

- Challenges in PCB routing
- Design constraint types
- Bus path design
- Team collaboration
Collaboration Drivers

- Optimize system performance
 - Efficiently leverage unique skill sets of team
- Reduce design cycle time
 - Leverage local or globally dispersed teams for parallel / concurrent design
- Increase resource management flexibility
Layout Collaboration Methodologies

- **Outsourcing**
 - Design must be partitioned (isolated), then merged when complete

- **Expanded team**
 - Traditionally done with multiple shifts (at single location or “follow-the-sun”)
 - Can also use the partitioning model
Layout Collaboration Challenges

- Most layout designers are used to driving start to finish
 - Consistent planning and ownership
 - Undisciplined “teamwork” may actually be “redesign”
- Managing design partitioning and collisions
Evolving Collaboration

Resource Management

- True simultaneous design
 - Link designers over local or global networks
 - Dynamically display peer results
 - Automatically keep database current
 - Reduce design times proportionally with the number of designers working concurrently
 - Share design tasks and pressures across the team
 - Use any time in the design flow
 - Pre-placement, ECOs, documentation, etc.
 - Design review by specialists, management, manufacturing
Evolving Collaboration

Resource Management

- Utilize networked computing resources
 - Single designer harnessing the power of multiple CPUs to accelerate auto-routing
 - Geographically distributed computational resources
 - Evaluate multiple placement / routing strategies
 - Automated distribution process not efficient for smaller designs
Conclusion

■ Design challenges
 – Increasing and conflicting constraints for performance and manufacturing
 – Drive to reduce design time

■ Designers and their tools are evolving
 – Continued iteration between interactive & automatic tasks
 – Blending of engineering and layout designer roles
 ■ New breed of planning (design abstraction) tools emerging
 – The concept of “resource management” is changing